We gaven hier al informatie mee die wees op de mogelijke betrokkenheid van gliale cellen bij chronische pijn (zie ‘Bewijs voor gliale aktivatie in de hersenen bij chronische pijn’ & ‘Glia, glutamaat-transport en chronische pijn’) maar ook bij neuro-inflammatie (zie ‘Microglia en geheugen’ & ‘Cerebrale inflammatie? TNF-α, Microglia, Bloed-Hersen-Barrière’), vermoeidheid (zie ‘Glia, glutamaat-transport en mentale vermoeidheid’) en M.E.(cvs) (zie ‘Microglia & CVS – Hypothesen & Onderzoek’ & ‘Gliale Cellen, Astrocyten en M.E.’).
Fysio-/kinesitherapeut Jo Nijs en z’n team hebben nu blijkbaar ook deze piste ontdekt. Wellicht in afwachting van de resultaten van hun studie aangaande de epigenetica van het BDNF gen en z’n relevantie voor pijn (zie ook literatuurstudie ‘BDNF – neuroplasticiteit bij neuropathische pijn & centrale sensitisatie’) geven ze hier een overzicht over de research aangaande “afwijkende aktiviteit van glia als mogelijk onderliggend, zelfs etiologisch (oorzakelijk) mechanisme voor centrale sensitisatie (ook voorkomend bij M.E.(cvs); zie ‘Centrale sensitisatie & pijn-behandeling’).
Er volgt ook een opsomming van mogelijke farmacologische behandelingen om deze problematiek aan te pakken maar hun ‘Pain in Motion International Research Group’ blijft dus ook focussen op beweging en inspanningtherapie. Het artikel gaat inderdaad niet per se over M.E.(cvs) maar er wordt niet aangegeven dat een dergelijke (op training gebaseerde) behandeling hiervoor nefast kan zijn (zoals veelvuldig door patiënten wordt aangegeven en door onderzoek wordt benadrukt).
————————-
Expert Opin Ther Targets (2017) 12: 1-10
Sleep disturbances and severe stress as glial activators: key targets for treating central sensitization in chronic pain patients?
Nijs J1,2,3, Loggia ML4, Polli A1,2, Moens M5,6, Huysmans E1,2, Goudman L1,2,5, Meeus M1,7,8, Vanderweeën L1,2,9, Ickmans K1,3, Clauw D10
1 Department of physiotherapy, human physiology and anatomy, Pain in Motion International Research Group, Vrije Universiteit Brussel, Brussels, Belgium
2 Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education & Physiotherapy, Vrije Universiteit Brussel, Brussels, Belgium.
3 Department of Physical Medicine and Physiotherapy, University Hospital Brussels, Brussels, Belgium
4 MGH/HST A. A. Martinos Centre for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
5 Department of Neurosurgery and Radiology, University Hospital Brussels, Brussels, Belgium
6 Department of Manual Therapy, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Belgium
7 Department of Rehabilitation Sciences and Physiotherapy, Ghent University, Ghent, Belgium
8 Department of Rehabilitation Sciences and Physiotherapy, University of Antwerp, Antwerp, Belgium
9 Private Practice for Spinal Manual Therapy, Schepdaal-Dilbeek, Belgium
10 Chronic Pain and Fatigue Research Centre, University of Michigan, Ann Arbor, USA
Samenvatting
Inleiding: Het mechanisme voor sensitisatie van het centraal zenuwstelsel verklaart gedeeltelijk de chronische pijn die door veel patiënten wordt ervaren maar de etiologische mechanismen van deze dysfunktie van het centraal zenuwstelsel worden niet goed begrepen. Een stijgend aantal studies suggereert dat afwijkende gliale aktivatie deel uitmaakt van het tot stand komen en/of onderhouden van centrale sensitisatie.
Domeinen: Dit overzicht focust op pre-klinisch werk en voornamelijk op de neurobiochemie bestudeerd bij dieren, met beperkte beschikbaarheid van studies bij mensen. Gliale over-aktivatie resuleert in een laag-gradige neuro-inflammatoire toestand, gekenmerkt door hoge waarden BDNF [Jason et al. rapporteerden in ‘Brain derived neurotrophic factor’ is gedaald bij CVS & MS’ over een onverwacht verminderde aanmaak], IL-1β, TNF-α, die op hun beurt de prikkelbaarheid van neuronen van het centraal zenuwstelsel verhogen door mechanismen zoals ‘long-term potentiation’ [LTP, langdurige versterkte communicatie tussen neuronen, resulterend uit hun gelijktijdige stimulatie; draagt in belangrijke mate bij aan chronische pijn] en verhoogde synaptische efficiëntie. Afwijkende gliale aktiviteit bij chronische pijn kan getriggerd zijn geweest door blootstelling aan ernstige stress, en/of slaap-stoornissen, die elk vastgestelde initiërende factoren zijn voor de ontwikkeling van chronische pijn.
Expert-opinie: Mogelijke behandel-paden omvatten meerdere farmacologische opties voor het verminderen van gliale aktiviteit, alsook conservatieve interventies zoals slaap-management, stress-management en inspanning-therapie. De farmacologische opties omvatten propentofylline, minocycline, β-adrenerge receptor antagonisten en cannabidiol. Vooraleer deze bevindingen te vertalen van basis-wetenschap naar klinische settings, zijn studies bij mensen nodig die de geschetste mechanismen verkennen bij patiënten met chronische pijn.
1. Inleiding
Moderne pijn-neurowetenschap heeft het begrijpen van pijn doe vooruitgaan, inclusief de rol van centrale sensitisatie (CS, of centrale hyper-exciteerbaarheid) bij aanwezigheid en amplificatie van (persistente) pijn-ervaringen. CS wordt gedefinieerd als een ‘amplificatie van neurale signalisering binnen het centraal zenuwstelsel die pijn hyper-sensitiviteit opwekt’ en ‘verhoogde responsiviteit van nociceptieve [nociceptie = pijn-waarneming] neuronen in het centraal zenuwstelsel voor normale of laag-drempelige afferente [signalen naar de hersenen] input’. Bij veel patiënten met chronische pijn ontbreekt een duidelijke oorzaak voor de nociceptieve input of ze is niet ernstig genoeg om de ernstige pijn en andere symptomen die door de patient worden ervaren, te verklaren. Bij dergelijke patiënten is CS dikwijls aanwezig en kan het klinisch beeld verklaren. Het is goed vastgesteld dat het mechanisme voor sensitisatie van het centraal zenuwstelsel gedeeltelijk de chronische pijn verklaart, inclusief bij mensen met neuropathische pijn, ‘whiplash’, chronische lage-rug pijn, osteoartritis, hoofdpijn, pijn na kanker-behandeling, fibromyalgie [Price DD, Staud R et al. Enhanced temporal summation of second pain and its central modulation in fibromyalgia patients. Pain. (2002) 99: 49-59], chronische schouder-pijn, Chronische Vermoeidheid Syndroom [Nijs J, Meeus M et al. In the mind or in the brain? Scientific evidence for central sensitisation in Chronic Fatigue Syndrome. Eur J Clin Invest. (2012) 42: 203-212; zie ook: ‘Centrale sensitisatie & pijn-behandeling’], Reumatoïde Artritis, enz.
CS beslaat verscheidene gerelateerde dysfunkties binnen het centraal zenuwstelsel, die allemaal bijdragen tot gewijzigde, dikwijls verhoogde responsiviteit voor een waaier aan stimuli zoals mechanische druk, chemische substanties, licht, geluid, koude, warmte, stress en elektriciteit. Dergelijke dysfunkties van het centraal zenuwstelsel omvatten sensitisatie van ruggemerg-neuronen, veranderde sensorische verwerking in het brein met verhoogde hersen-aktiviteit in gebieden die bekend staan om hun betrokkenheid bij het voelen van acute pijn […]), betrokkenheid van meerdere hersenstam-kernen […], gewijzigde brein-neurochemie, slecht funktioneren van dalende anti-nociceptieve mechanismen en verhoogde aktiviteit van door de hersenen georkestreerde nociceptieve faciliterende mechanismen. Deze faciliterende mechanismen houden waarschijnlijk verband met de verhoogde hersen-aktiviteit zoals hierboven beschreven en ze kunnen (verder) worden geaktiveerd door cognitief-emotionele factoren zoals pijn-katastrofering, stress, hypervigilantie, gebrek aan aanvaarding, depressieve gedachten en maladaptieve ziekte-percepties (bv. ervaren onrechtvaardigheid, lage zelf-doeltreffendheid).
CS gaat ook gepaard met een overdreven respons van het centraal zenuwstelsel op nociceptieve of zelfs niet-nociceptieve input, resulterend in pijn die disproportioneel is met de stimulus. CS is dikwijls geassocieerd, niet enkel met ernstige pijn, maar ook met verscheidene andere symptomen zoals slaap-stoornissen en stress-intolerantie. Ondanks ons beter begrijpen van de mechanismen die (hyper-sensitiviteit) symptomen verklaren bij patiënten met chronische pijn, valt er veel te leren over de ontwikkeling van chronische pijn, inclusief de etiologische mechanisme die aan de basis van CS liggen. Waarom ontwikkelen sommige patiënten CS-pijn terwijl dat bij andere niet zo is?
Glia zijn niet-neuronale cellen in het zenuwstelsel. Een subgroep gliale cellen, in het bijzonder microglia en astrocyten, lijken fysiologisch op immuuncellen en kunnen daarom worden gezien als immuun-achtige of immuun-competente cellen. Al te lang hebben neurowetenschappers gefocust op neuronen en de glia verwaarloosd, waarschijnlijk omwille van het feit dat de basis-neurowetenschap historisch ontwikkelde uit methodes om de elektrische signalisering in (tussen) neuronen te monitoren. Toch zijn er veel meer glia dan neuronen en hebben ze een veel hogere cellulaire diversiteit en meer funkties dan neuronen.
Steeds meer pre-klinische studies suggereren dat afwijkende glia-aktivatie het bewerkstelligen en/of onderhouden van CS en persistente pijn kan verklaren [bv. Loggia ML et al. Evidence for brain glial activation in chronic pain patients. Brain: J Neural. (2015) 138: 604-615], en dat slechte slaap en ernstige stress [bv. Wohleb ES et al. Monocyte trafficking to the brain with stress and inflammation: a novel axis of immune-to brain communication that influences mood and behavior. Front Neurosci. (2014) 8: 447] elk kunnen resulteren in dergelijke gliale aktivatie. Hier geven we een update over het huidig begrip van de potentiële rol van afwijkende gliale aktiviteit bij het verklaren van (de aanvang van) CS bij patiënten met chronische pijn, samen met ernstige of langdurige stress en slaap-stoornissen als triggers voor afwijkende gliale aktivatie.
Ten slotte worden mogelijke farmacologische en niet-farmacologische behandel-paden voor deze neuro-immune interakties besproken. Deze ‘review’ focust op pre-klinisch werk en voornamelijk op de neurobiochemie bestudeerd bij dieren, waarbij menselijke studies beperkt beschikbaar zijn.
2. Gliale aktivatie, neuro-inflammatie en de etiologie van CS pijn
De 3 voornaamste gliale cel-types zijn microglia, astrocyten en oligodendrocyten. Hoewel oligodendrocyten ook geïmpliceerd bleken bij de ontwikkeling van centrale pijn, zullen we ons hier voornamelijk focussen op de eerste twee glia-klassen, aangezien hun rol bij pijn is meer gevestigd is. Er wordt soms naar microglia gerefereerd als de residente macrofagen in het brein: bij een letsel of infektie worden ze geaktiveerd en werken ze samen om de schade te herstellen en de brein-homeostase te herstellen. Om microglia toe te laten deze belangrijke fysiologische funktie uit te voeren, is het cruciaal dat het geen statische cellen zijn maar eerder een hoge graad van mobiliteit binnen het centraal zenuwstelsel hebben. Hoewel in het verleden auteurs microglia kenmerkten als in ‘rust-toestand’ of ‘geaktiveerde toestand’ vertoevend, accepteren de meeste nu dat microgliale cellen, wanneer ze niet geaktiveerd zijn, in een ‘surveillance’ eerder dan ‘rust’ toestand verkeren. Microglia zijn in feite continu hun processen aan het uitbreiden en terugtrekken om het molekulair en cellulair micro-milieu, inclusief synapsen, in hun nabijheid te scannen.
Daarnaast spelen microglia een cruciale rol bij synaps-vorming, synaps-eliminatie (bv. microglia kunnen hippocampus-synapsen fagocyteren) en verfijning van neuronale circuits met complement [onderdeel van de aangeboren immuun-respons dat antilichamen en fagocyterende cellen ‘complementeert’ (aanvult) in de strijd tegen pathogenen] -proteïnen (C1q en C3) als cruciale mediatoren. Synaps-vorming/-eliminatie is een belangrijk mechanisme voor veel funkties, inclusief leren (‘long-term potentiation’ en langdurige depressie) en bescherming tegen letsels. De REM-slaap is belangrijk bij het selektief elimineren en onderhouden van nieuw gevormde synapsen, wat op z’n beurt bijdraagt tot het leren en consolidatie van het geheugen. De mobiliteit van microglia wordt ook gereguleerd via verschillende manieren van neurotransmissie: verhoogd door glutamaterge neurotransmissie en verlaagd door GABAerge neurotransmissie. Vandaar dat microglia en neuronen bidirectioneel interageren en elkaar constant ‘fine-tunen’.
Na aktivatie transformeren microglia morfologisch van een vertakt (rustend) naar een amoeboïd (fagocyterend) fenotype. Niet elke geaktiveerde microglia vertoont een pro-inflammatoir patroon. Inflammatoire akties van microglia hangen af van het aktivatie-subtype. Het pro-inflammatoire subtype (M1) sekreteert pro-inflammatoire cytokinen (bv. tumor necrose factor α (TNFα), interleukine-1β (IL-β), IL-6), neurotrofe factoren (bv. ‘brainderived neurothrophic factor’, BDNF) en vrije radicalen toxisch die zijn voor de omringende cellen. Het anti-inflammatoire subtype (M2) sekreteert anti-inflammatoire cytokinen (bv. IL-10) voor het oplossen van inflammatie en trofe factoren voor het bevorderen van weefsel-genezing. Een dergelijk genereren van inflammatoire responsen wordt gemedieerd via de aktivatie van p38 mitogen-aktiverend kinase (MAPK [‘mitogen activated protein’ (MAP) kinasen reageren op extracellulaire stimuli (mitogenen) en reguleren verscheidene cellulaire aktiviteiten, zoals gen-expressie, celdeling, differentiatie en cel-overleving/apoptose]) in ruggemerg-microglia, ten minste bij mannelijke (maar niet bij vrouwelijke) dieren; dit speelt een centrale rol bij een brede dynamische waaier van neuronale hyper-exciteerbaarheid. M1-M2 polarisatie van microglia heeft ook verschillende effekten op de synaptogenese [ontstaan van synapsen]: M2-microglia stimuleren synaptogenese, terwijl M1-microglia in inflammatoire toestand resulteert in synaps-eliminatie (synaptische ‘stripping’, een mechanisme gelinkt met leer-processen). Er is discussie over het concept M1 versus M2 polarisatie van microglia, aangezien het een continu proces kan betekenen eerder dan verschillende subtypes. Ook het feit dat gliale cellen verschillende dynamieken vertonen en een verschillende mate van aktivatie na een stimulus kan verschillen bij patiënten verklaren, mogelijks zelfs gedeeltelijk waarom sommige mensen chronische pijn ontwikkelen na een gebeurtenis (bv. lichamelijk trauma), terwijl dat bij anderen niet het geval is.
In de acute of sub-acute fasen van een letsel of pijn, speelt gliale aktivatie waarschijnlijk een adaptieve rol, aangezien het weefsel-genezing en herstel begunstigt. Wanneer gliale aktivatie niet verdwijnt, en chronisch wordt, kan het pathogeen worden en leiden tot collaterale schade van nabijgelegen neuronen en andere glia. De resulterende laag-gradige chronische neuro-inflammatie is een onderliggend kenmerk van veel neurologische aandoeningen (zoals majeure depressie, Alzheimer’s, Parkinson’s, schizophrenie, traumatisch hersen-letsel, enz.). Gelijkaardige chronische neuro-inflammatie zou ook betrokken kunnen zijn bij de pathogenese van chronische pijn.
Afwijkende gliale aktiviteit heeft het potentieel CS te initiëren via meerdere mechanismen. Geaktiveerde microglia werden geïdentificeerd als een belangrijke bron voor de synthese en afgifte van BDNF dat verantwoordelijk is voor verhoogde neuronale prikkelbaarheid via het veroorzaken van ontremming in dorsale hoorn neuronen van het ruggemerg. Deze microglia-naar-neuron communicatie omvat niet enkel verzwakking van de pijn-inhiberende werking van gammaaminoboterzuur (GABA) maar ook van glycine-receptor [één van de meest voorkomende neurotransmissie-inhiberende receptoren in het centraal zenuwstelsel] gemedieerde inhibitie. Verhoogde gliale synthese van BDNF in de nociceptieve mechanismen bij patiënten met CS pijn kan worden beschouwd als een pathofysiologische respons [Nijs J, Meeus M, Versijpt J et al. Brain-derived neurotrophic factor as a driving force behind neuroplasticity in neuropathic and central sensitization pain: a new therapeutic target? Expert Opin Ther Targets. (2015) 19: 565-576].
Gestegen IL-1 gen-expressie in microglia werd gelinkt aan de inductie en het onderhouden van ‘long-term potentiation’ (en bijgevolg met leren, angst en geheugen-processen). Zo ook gaat gliose [verhoogd aantal gliale cellen in een beschadigd gebied van de hersenen; de non-specifieke neuropathologische reaktie van het brein op verschillende neurologische ziekten] vergezeld van TNF-α beschikbaarheid, die op z’n beurt ‘long-term potentiation’ induceert en daardoor versterkte synaptische werkzaamheid en pijn-sensitisatie. ‘Long-term potentiation’ en versterkte synaptische werkzaamheid zijn (deels overlappende) sleutel-mechanismen die aan de basis liggen van verhoogde exciteerbaarheid van centraal zenuwstelsel pijn en de vorming van (maladaptief) pijn-geheugen bij patiënten met chronische pijn en CS, mogelijks gecoördineerd door gliose. Zo aktiveren ook pro-inflammatoire mediatoren, aangemaakt door geaktiveerde microglia tijdens neuro-inflammatie, op directe wijze nabijgelegen neuronen (die receptoren voor deze pro-inflammatoire cytokinen tot expressie brengen) die op hun beurt hyper-exciteerbaar worden.
Hoewel struktureel en funktioneel heel verschillend van microglia werd van astrocyten overtuigend aangetoond dat ze een sleutel-rol spelen in de pathogenese van aanhoudende pijn in dieren-modellen. Astrocyten zijn in staat de aanwezigheid van een aanval, zoals een inflammatoire belasting of zenuw-letsel, te detekteren, waarop ze reageren met hypertrofie en verhoogde expressie van een reeks molekulen die bijdragen tot hyperalgesie [verhoogde pijngevoeligheid] en allodynia [ervaring van pijn bij een gewoonlijk niet-pijnlijke prikkel], zoals het enzyme stikstof-oxide synthase, het pro-inflammatoir cytokine IL-1 en het chemokine CXCL1.
Naast de hierboven uitgelegde mechanismen, zouden andere mechanismen afwijkende gliale aktivatie en CS pijn kunnen linken. Dit omvat de expressie en funktie van de adenosine A1 receptor (A1AR) op microglia [Luongo L et al. The A1 adenosine receptor as a new player in microglia physiology. Glia. (2014) 62: 122-132]. Ca2+-influx geïnduceerd door ATP-behandeling en microgliale cellen voorbehandeld met een A1AR agonist [agonist = molekule die bindt op een receptor, deze aktiveert en een biologische respons opwekt], vertonen een lagere capaciteit om spinale [van het ruggemerg] nociceptieve neuronen te faciliteren. Daarnaast zijn er proteinase-geaktiveerde receptoren, een familie van G-proteïne-gekoppelde receptoren [na aktivatie van G-proteïne gebonden receptoren ontstaan er intracellulair zogenaamde ‘second messengers’ die, na een aantal biochemische tussenstappen, zorgen voor de uiteindelijke signaal-overdracht] in neuronen, microglia en astrocyten. Ze worden geaktiveerd door proteasen [eiwit-splitsende enzymen] en initiëren een reeks intracellulaire signalisatie mechanismen die resulteren, niet enkel in sensitisatie van pijn-mechanismen maar ook in de aktivatie van de nucleaire factor NF-κB [transcriptie-factor; regelt genen voor apoptose, viral replicatie, inflammatie en auto-immune ziekten], die belangrijk is voor neurale plasticiteit in het zenuwstelsel, inclusief synaptogenese. Geaktiveerd NF-κB heeft het vermogen de expressie van BDNF in centrale neuronen te verhogen.
Belangrijk: farmacologische ontwrichting van de astrogliale en microgliale funktie, of van de werking van hun produkten, kan nocifencief [gerelateerd met pijn en ongemak] gedrag in dieren reduceren, omkeren of voorkomen. Alles te samen tonen deze studies aan dat astrocyten, net zoals microglia, een belangrijke rol spelen in de pathogenese van persistente pijn bij dieren.
In feite werd bijna al het bewijsmateriaal aangaande het feit dat microglia een belangrijke rol kunnen spelen bij het onderhouden van chronische pijn afgeleid van dieren-modellen. De eerste menselijke studie aangaande gliale aktiviteit gebruikte een gevoelige in vivo merker voor gliale cel aktivatie, gemonitord d.m.v. positron-emissie-tomografie (PET), om aan te tonen dat denervatie van ledematen (n = 7) gliale aktivatie induceert […]. Enkel die ene patient met bilaterale zenuw-beschadiging vertoonde bilaterale microglia-aktivatie in de thalamus, terwijl de andere 6 patiënten slechts contra-laterale [aan de andere kant] aktivatie vertoonden. Een andere studie bij mensen (gebruikmakend van PET magnetische resonantie beeldvorming) identificeerde een patroon consistent met gliale aktivatie in de hersenen bij patiënten met chronische lage-rug pijn, een aandoening waarvan is geweten dat ze gerelateerd is met CS. Andere studies bij mensen (gebruikmakend van cerebrospinaal vocht) ondersteunen ook een mogelijke rol voor wijzigingen qua centrale cytokinen en neurotrofe factoren, consistent met afwijkende gliale aktivatie en gerelateerde neuro-inflammatie, bij een aantal toestanden met chronische pijn, ondanks variërende etiologieën. Vandaar: het beschikbare bewijsmateriaal ondersteunt een associatie tussen afwijkende gliale aktiviteit en neuro-inflammatie bij mensen met chronische pijn, maar direct bewijs dat aantoont dat afwijkende gliale aktiviteit en neuro-inflammatie leiden tot de ontwikkeling van CS bij mensen is nog niet beschikbaar en vereist verder onderzoek.
Als afwijkende gliale aktivatie of gliose de aanvang van CS verklaart, zal de volgende vraag zijn: wat triggert afwijkende gliale aktivatie? Neurowetenschap heeft ons voorzien van een aantal mogelijke antwoorden, inclusief ernstige stress en slaap-stoornissen die voornamelijk het brein als doelwit hebben. In het ruggemerg wordt gliale aktivatie voornamelijk getriggerd door inflammatie van perifeer weefsel of zenuw-beschadiging. In sommige gevallen is afwijkende gliale aktivatie wellicht niet voldoende voor pijn hyper-sensitiviteit, waardoor het nodig is verder te kijken dan door glia getriggerde neuro-inflammatie, naar de gevolgen van dergelijke afwijkende gliale aktivatie en gerelateerde neuro-inflammatie op de morfologie en de funktie van de hersenen.
3. Stress als een trigger voor gliale aktivatie en daaropvolgende morfologische hersen-veranderingen
Stress kan worden gedefinieerd als de continue strijd van levende organismen om te een interne dynamische toestand van evenwicht (homeostase) te behouden. Elke factor, fysiek, psychosociaal of emotioneel, die een uitdaging betekent voor de homeostase, wordt gelabeld als een stressor. Hoge waarden voor angst in de periode rond een traumatisch musculoskeletaal letsel voorspelt de ontwikkeling en het onderhouden van matig-tot-ernstige chronische pijn. Ook mishandeling tijdens de kindertijd (inclusief emotioneel misbruik) is niet alleen geassocieerd met een verhoogd risico op chronische (lage-rug) pijn, het houdt ook verband met langdurige CS voor nociceptieve stimuli – zoals wordt gezien in een subgroep van (zeer verzwakte) mensen met chronische lage-rug pijn.
In respons op langdurige stress wordt het lichaam blootgesteld aan hoge concentraties glucocorticoïden. Glucocorticoïden coördineren de expressie van subsets genen die betrokken zijn bij signaal-transductie, neuronale struktuur, dynamiek van vesikels [kleine membraan-blaasjes die kunnen versmelten met het cel-membraan zodat de stof die ze bevatten kan vrijkomen], neurotransmitter-katabolisme, codering van neurotrofe factoren en hun receptoren. Dit samen genomen resulteert stress in een zeer gecoördineerde set wijzigingen qua gen-expressie die aan de basis ligt van neuronale plasticiteit, gliale aktivatie en daaropvolgende neuro-inflammatie met verhoogde IL-1β en IL-6 mRNA expressie. Inderdaad: stress en de resulterende noradrenaline plus glucocorticoïden aktiveren microglia (die α1, α2, β1 en β2-adrenerge en glucocorticoid-receptoren tot expressie brengen), resulterend in neuro-inflammatie (met verhoogde beschikbaarheid van pro-inflammatoire cytokinen zoals IL-1, TNF-α en IL-6) /gliose. Stress aktiveert glia op zo’n manier dat ze transformeren naar het pro-inflammatoir subtype, wat dan CS kan induceren. Lang vooraleer ze geaktiveerd werden, zouden microglia kunnen zijn ‘voorbereid’ door een traumatische gebeurtenis zodat een tweede ‘hit’ (bv. een ander trauma of stress) een overdreven gliale respons induceert (de ‘double-hit’ hypothese zoals beschreven bij andere neuro-inflammatoire aandoeningen).
Het is niet verrassend dat, in respons op stress, microglia in meerdere hersen-gebieden geaktiveerd blijken te worden, inclusief de pre-frontale cortex, de laterale, baso-laterale, centrale en baso-mediale kernen van de amygdala, en in de [delen van de] hippocampus. Deze hersen-gebieden ondergaan morfologische wijzigingen in respons op stress en spelen ook een kardinale rol bij chronische pijn. Microglia zouden, via meerdere mechanismen, inclusief de aanmaak van BDNF [McEwen BS et al. Stress and anxiety: structural plasticity and epigenetic regulation as a consequence of stress. Neuropharmacology. (2012) 62:3-12], dergelijke stress-geïnduceerde morfologische veranderingen in de hersenen en zelfs CS kunnen verklaren. De pro-inflammatoire mediatoren geproduceerd door geaktiveerde microglia tijdens neuro-inflammatie aktiveren op directe wijze receptoren op nabijgelegen neuronen, en induceren hun hyper-exciteerbaarheid.
Verrassend is dat de morfologische brein-veranderingen in respons op chronische stress ietwat plaats-specifiek zijn i.p.v. diffuus, en voornamelijk hypertrofie in de amygdala, en atrofie in de pre-frontale cortex en hippocampus betrokken zijn. Dit kan ten dele gerelateerd zijn met de verdeling van glucocorticoid-receptoren, die wijdverspreid tot expressie komen in de hersenen maar hoge densiteiten hebben in de mediale pre-frontale cortex, en specialiteit hebben in de hippocampus en amygdala. Initiële experimenten betreffende de morfologische wijzigingen in belangrijke hersen-gebieden in respons op chronische stress werden uitgevoerd bij dieren, later bij mensen […]. Deze morfologische veranderingen kunnen worden geïnduceerd door herhaalde blootstelling aan milde stressoren of kortstondige maar intense stress. Het is belangrijk om te benadrukken dat deze stress-geïnduceerde morfologische wijzigingen omkeerbaar kunnen zijn en dus geen weerspiegeling zijn van echte hersen-schade maar eerder van een vorm van plasticiteit. Deze morfologicsche veranderingen zouden hersen-gebieden kunnen beschermen tegen permanente excitotoxische beschadiging [excitotoxicitet = pathologisch proces waarbij zenuwcellen worden beschadigd of gedood door overmatige stimulatie door neurotransmitters] en daarom adaptief kunnen zijn.
4. Slaap als een trigger van gliale aktivatie en neuro-inflammatie
In afwezigheid van andere intrinsieke slaap-aandoeningen en ploegen-arbeid, wordt insomnia [slapeloosheid] gedefinieerd als > 30 min slaap-latentie en/of minuten wakker na aanvang van de slaap > 3 dagen/week gedurende > 6 maanden. Stress, slaap en pijn zijn nauw met elkaar verbonden. Slapeloosheid is zeer prevalent bij patiënten met chronische pijn, waarbij 53-90% van de patiënten met chronische pijn lijden aan een klinische significante mate van slapeloosheid. Dit kan gedeeltelijk worden toegeschreven aan de rol van stress. Ten eerste: dagelijkse levens-stress (bv. piekeren over naar het werk gaan de volgende morgen) kan de slaap verstoren. Ook belangrijke stressvolle levens- en/of traumatische gebeurtenissen zoals natuurrampen, oorlogvoering of een verkeersongeval resulteren in wijzigingen qua slaap-architectuur die slechte slaap weerspiegelen. Meer ontwakingen en verminderde slaap-efficiëntie zijn de meest gevoelige slaap-architectuur variabelen in respons op stress. Ten tweede: slechte slaap (bv. ‘s nachts wakker liggen of de slaap niet kunnen vatten) kan een stressor zijn. Ten derde: de gevolgen van slechte slaap (bv. zich prikkelbaar en vermoeid voelen) resulteren in een uitgesproken verminderd vermogen om om te gaan met de dagdagelijkse stressoren. Om al deze redenen lijkt het logisch dat slaap-management dikwijls wordt opgenomen als onderdeel van stress-management programma’s.
Bij het aanpakken van slaap-problemen in de context van pijn-neurowetenschap, is het belangrijk om te benadrukken dat één enkele nacht van totale slaap-deprivatie bij gezonde mensen veralgemeende hyperalgesie kan induceren en angst verhogen. Deze bevindingen suggereren dat slaap-problemen niet enkel de hyper-exciteerbaarheid van het centraal zenuwstelsel kunnen bestendigen bij patiënten met chronische musculoskeletale maar ook dienen als een initiërende factor. Ons huidig begrip van slaap neuro-immunologie biedt potentiële links tussen slaap-problemen en (de aanvang van) pijn.
Melatonine is een neurohormoon dat cruciaal is voor (diepe) slaap en analgesie. Pre-klinische studies onthulden dat selektieve […] agonisten [binden en aktiveren een receptor] voor de MT2 melatonine-receptor [komt tot expressie in het netvlies; bindt melatonine] analgetische eigenschappen hebben via modulatie van […] dalende anti-nociceptieve systemen, in modellen voor neuropathische pijn.
Andere neurale mechanismen zouden kunnen bijdragen tot de nauwe interaktie tussen chronische pijn en slechte slaap. Terwijl een behoorlijke slaap de immune gezondheid faciliteert, resulteert slaap-deprivatie in laag-gradige inflammatoire responsen. Deze laag-gradige inflammatoire respons als een gevolg van slaap-deprivatie omvat verhoogde waarden van IL-6, prostaglandine-E2 en stikstof-oxide, mogelijks gemedieerd door cerebrale microglia. Zelfs lage waarden inflammatoire cytokinen staan er om bekend de hersen-funktie aan te tasten, wat correleert met observaties van verhoogde sensitiviteit voor pijnlijke stimuli na slaap-beperking. Slaap-apneu, soms gediagnostiseerd bij patiënten met chronische pijn, wordt gekenmerkt door periodieke hypoxie [zuurstof-tekort], wat op z’n beurt hersen-microglia aktiveert in de richting van een geaktiveerde, pro-inflammatoire toestand. Samengevoegd: slaap-ontbering geeft een glia-gemedieerde laaggradige inflammatoire respons die leidt naar verhoogde gevoeligheid voor pijn, zoals typisch wordt gezien bij mensen die lijden onder chronische pijn.
Het begrijpen dat afwijkende gliale aktivatie of gliose mogelijks de aanvang van CS verklaart, doet de vraag rijzen hoe deze bevindingen te vertalen naar therapeutische doelwitten? Zo ook roept het begrijpen dat afwijkende gliale aktivatie te wijten kan zijn aan chronische stress en/of slaap-stoornissen de vraag op hoe er rekening mee te houden in de klinische praktijk? De studie van de rol van glia bij mensen met chronische pijn en het mechanisme van CS in het bijzonder, staat nog in de kinderschoenen, wat maakt dat het te vroeg is om deze bevindingen naar de klinische praktijk te vertalen. Nadenken over mogelijke therapeutische doelwitten biedt echter nieuwe innovatieve padden voor het experimenteel testen van deze ideeën bij mensen met CS en chronische pijn binnen een research-setting.
5. Behandeling die het potentieel hebben gliale aktiviteit te normaliseren
Farmacologische behandelingen zoals minocycline, een antibioticum, hebben theoretisch het vermogen om afwijkende gliale aktiviteit aan te pakken bij patiënten met CS en chronische pijn. Werk bij dieren heeft aangetoond dat (post-operatieve) minocycline microglia en astrocyten onderdukt, en TNF-α en IL-1β mRNA waarden in de hippocampus reduceert. Ook inhibeert minocycline spinale microgliale aktivatie en verzacht pijn in ratten met experimenteel geïnduceerde diabetes. Een kleine gerandomiseerde klinische proef heeft getoond dat een korte behandeling met minocycline geassocieerd was met een kleine maar statistisch significante vermindering van de pijn bij patiënten met lumbale radiculopathie [pijn veroorzaakt in de lage-rug en heup die uitstraalt naar de dij en het been]. Aangezien dergelijke patiënten verhoogde gliale aktiviteit vertonen, is het mogelijk dat minocycline bij mensen de pijn reduceert via inhibitie van microglia, aangezien het dit doet bij dieren.
Een ander therapeutisch pad omvat voorbehandeling met βadrenerge receptor antagonisten (bv. propranolol [bloeddruk-verlager]), waarvan werd getoonde dat het microgliale aktivatie reduceert in een dieren-model. In vitro werk toonde dat ketamine [verdovingsmiddel en recreatieve drug] sommige van de inflammatoire responsen van zowel astrocyten en microgliale cellen inhibeerde. Daarnaast remt cannabidiol, een belangrijk niet-psychotomimetisch [zonder de symptomen van psychose, inclusief waanbeelden en/of delirium] bestanddeel van Cannabis sativa [hennep], microgliale aktivatie en daaropvolgende neuro-inflammatie [Gomes FV et al. Decreased glial reactivity could be involved in the antipsychotic-like effect of cannabidiol. Schizophr Res. (2015) 164: 155-163]. Toch dient voor al deze behandeling nog te worden vastgesteld of ze in staat zijn gliale aktiviteit bij mensen te normaliseren en indien dit het geval is: of dergelijke gliale effekten gepaard gaan met analgetische effekten.
Daarnaast werden inhibitoren van cytokine-synthese (die nauw verwant zijn met gliale aktiviteit), inclusief propentofylline [xanthine-derivaat, onderdrukt de produktie van pro-inflammatoire cytokinen, reaktieve zuurstof molekulen en stikstof-oxide], onderzocht op het gebruik als therapeutische agentia voor de behandeling van neuropathische pijn. Menselijke microglia waren minder responsief voor propentofylline-behandeling, wat twijfel deed rijzen omtrent het feit of directe microgliale inhibitie een relevant therapeutisch doelwit is voor patiënten met chronische pijn. Bezorgdheden omtrent de methodologie bij deze studies (duur van de proef, gebruikte dosering, specifieke doelwit-populatie en mogelijke interakties met andere medicijnen en voedsel-inname) beperkten de significantie van deze negatieve studie-uitkomsten.
Ook: bij de hierboven geschetste redenering aangaande de mogelijke rol van afwijkende gliale aktiviteit en neuro-inflammatie met betrekking tot CS werd primair gefocust op de aanvang van CS. Als CS geïnitieerd is en de afwijkende gliale aktiviteit en neuro-inflammatie gedurende enkele maanden of langer aanwezig is, heeft dit waarschijnlijk geresulteerd in neuroplastische veranderingen, inclusief enkele van de eerder besproken wijzigingen qua brein-morfologie of connectiviteit. Wanneer neuroplastische veranderingen reeds gevestigd zijn, kan het aanpakken van afwijkende gliale aktiviteit te laat zijn of op z’n best kan het verdere versnelling van CS bij patiënten met chronische pijn voorkomen, i.p.v. dienst te doen als een nieuwe potentiële behandeling voor chronische pijn. Deze redenering wordt ondersteund door werk bij dieren, dat toont dat – na afbinding van een ruggemerg-zenuw – dorsale hoorn microglia eerst worden geaktiveerd, gevolgd door aktivatie van astrocyten, vergezeld van een daling van microgliale aktiviteit. Vandaar dat het aanpakken van afwijkende gliale aktiviteit een nieuw therapeutisch pad kan zijn voor de preventie van de ontwikkeling, eerder dan de behandeling, van CS en chronische pijn. Een pre-klinische studie gaf positieve uitkomsten wanneer glia-onderdrukkende medicijnen worden toegediend in de vroege post-operatieve fase maar dit idee vereist experimentele testen bij mensen. De mogelijkheid van gliale aktivatie beeldvorming in vivo kan helpen patiënten te identificeren die het meest waarschijnlijk voordeel kunnen halen uit deze therapeutische benadering, en om optimaal behandel-venster, -duur of -dosering te identificeren.
6. Besluit
Een steeds groter wordende hoeveelheid gegevens van research bij dieren ondersteunt het idee van afwijkende gliale aktiviteit als een potentieel onderliggend, zelfs etiologisch, mechanisme voor CS. Dergelijke gliale over-aktivatie resulteert in een laag-gradige neuro-inflammatoire toestand, gekenmerkt door hoge waarden BDNF, IL-1β en TNF-α, wat op z’n beurt de exciteerbaarheid van neuronen van het centraal zenuwstelsel verhoogt via mechanismen zoals ‘long-term potentiation’ en verhoogde synaptische efficiëntie. Andere mechanismen die afwijkende gliale aktiviteit linken met de ontwikkeling van CS omvatten verzwakking van de nociceptieve inhiberende werking van GABA en glycine-receptor gemedieerde inhibitie. Daarnaast zou afwijkende gliale aktiviteit bij chronische pijn worden getriggerd door ernstige stress en/of slaap-stoornissen, die elk initiërende factoren bleken voor de ontwikkeling van chronische pijn. Mogelijke behandel-paden omvatten meerdere farmacologische opties voor het verminderen van gliale aktiviteit, alsook conservatieve interventies zoals slaap-management, stress-management en inspanning-therapie. Vooraleer deze bevindingen te vertalen van basis-wetenschap naar klinische settings, zijn meer studies bij mensen nodig die de geschetste mechanismen bij patiënten met chronische pijn onderzoeken.
Dit werk hier focust op de rol van de glia. Er bestaan nog andere neuro-immune mechanismen. Bijvoorbeeld: naast stress en slaap-problemen, suggereert research bij dieren dat neurotrauma resulteert in afwijkende gliale aktiviteit. Ook: neuro-inflammatie geobserveerd bij dieren in respons op stress zou niet enkel aan gliale aktivitie kunnen worden toegeschreven: stress induceert ook monocyten-‘trafficking’ [het zich verplaatsen van immuun-cellen] naar de hersenen (bv. van het beenmerg naar de amygdala), resulterend in inflammatie (d.i. IL-1β gemedieerd angstig gedrag). Deze verhoogde monocyten-recrutering naar het brein is een uniek mechanisme waarbij het immuunsysteem communiceert met de hersenen. Daarnaast onthulde onderzoek bij dieren geslacht-verschillen, inclusief een microglia-onafhankelijk mechanisme dat pijn hyper-sensitiviteit medieert. Volgens deze studies zijn microglia niet vereist voor de ontwikkeling van mechanische pijn hyper-sensitiviteit bij vrouwelijke muizen, aangezien ze gelijkaardige niveaus bereiken qua pijn hyper-sensitiviteit via adaptieve immuun-cellen, waarschijnlijk T-lymfocyten. Monocyten-‘trafficking’ zou het gepreferreerd mechanisme kunnen zijn voor het medieren van pijn hyper-sensitiviteit bij vrouwen.
Deze ‘review’ focuste op het verklaren van onderliggende mechanismen voor CS, een mechanisme waarvan is vastgesteld dat het bedraagt aan een brede waaier aan pathologieën. Het is moeilijk bevindingen van veel verschillende of pathologieën, studies op verschillende molekulaire niveaus en van verscheidene types experimenten in één artikel te combineren. Het artikel heeft echter als doel een brug te creëeren tussen pre-klinische en klinische gegevens, om bij te dragen tot translationele inspanningen in dit onderzoekgebied (of ten minste translationeel werk [vertaling wetenschap naar kliniek] in dit gebied te stimuleren).
7. Expert opinie: niet-farmacologische behandel-opties om gliale aktiviteit te normaliseren
We benadrukten de rol van ernstige stress en slaap-stoornissen bij het triggeren van afwijkende gliale aktiviteit, implicerend dat afwijkende gliale aktiviteit niet de oorzaak is maar in plaats daarvan een onderdeel van een lange keten van gebeurtenissen die CS initiëren. Vandaar dat conservatieve interventies zoals stress- en slaap-management gerechtvaardigd lijken.
Binnen het onderzoekgebied van de conservatieve interventies, is inspanning ook een interventie die nuttig is bij veel chronische pijn toestanden en ook zou kunnen werken (ten dele) via gliale mechanismen. Inspanning verhoogt de expressie van ‘glial fibrillary acidic protein’ [GFAP; cytoskeletale component van o.a. astrocyten] in hippocampus-astrocyten, meer specifiek in het ‘stratum radiatum’, een gebied dat talrijke astrocyten bevat en belangrijk is voor leren en geheugen. De verhoogde expressie van de astrocyten-merker ‘glial fibrillary acidic protein’ impliceert dat inspanning resulteert in een substantiële toename qua astrogliaal metabolisme en proteïnen-synthese, consistent met een gezonde cellulaire hypertrofie in respons op verhoogde fysiologische vereisten. Deze notie wordt ondersteund door de geobserveerde wijziging qua morfologie van de astrocyten in respons op inspanning. Deze astrocyten-aktivatie in respons op inspanning kan worden verklaard door de toegenomen aanmaak van groeifactoren zoals ‘nerve growth-factor’, ‘fibroblast growth-factor’, ‘glial cell line-derived neurotrophic factor’ & BDNF in respons op inspanning [bv. Spielman U, Little JP, Klegeris A. Physical activity and exercise attenuate neuro-inflammation in neurological diseases. Brain Res Bull. (2016) 125:19-29] – bv. ‘nerve growth-factor’ en ‘fibroblast growth-factor’ zijn in staat astrocyt-proliferatie te induceren. Astrocyten-aktivatie in respons op inspanning impliceerde versterkte ‘tripartite’ synapsen [funktionele integratie van pre- & post-synaptisch membraan met glia], aangezien astrocyten nodig zijn (en hun morfologie wijzigen) rond gepotentieerde synapsen om neuronale plasticiteit te begeleiden, zoals wordt gezien tijdens ‘long-term potentiation’.
De immuun-modificerende, meer specifiek ‘whole-body’ antiinflammatoire, effekten van milde fysieke aktiviteit/inspanning zijn goed gekend. Inspanning staat er om bekend de inflammatoire toestand te veranderen en anti-inflammatoir of neuroprotectief te worden bij meerdere neuro-inflammatoire ziekten zoals Multipele Sclerose en Systemische Lupus Erythematosus. Belangrijk: nieuwe research-bevindingen suggereren dat inspanning ook anti-inflammatoire effekten kan hebben op het centraal zenuwstelsel. Meer specifiek: het lijkt plausibel dat inspanning(therapie) de nadelige en niet-specifieke aktivatie van of gliale cellen (gliose) – zoals typisch wordt gezien bij chronische neuro-inflammatie kan verminderen. Op het niveau van de gliale cellen reduceert fysieke aktiviteit/inspanning microgliale proliferatie en triggert het een switch naar een anti-inflammatoir fenotype. Een dergelijke fenotype-verschuiving gaat gepaard met een dramatische verandering qua produktie van cytokinen (d.i. van pro- naar anti-inflammatoir). Dit biedt een plausibele verklaring voor hoe regelmatige en milde inspanning de gliale aktiveit binnen de gezonde perken houdt, wat op z’n beurt zou kunnen bijdragen tot de gedaalde incidentie van hersen-ziekte (gekenmerkt door chronische neuro-inflammatie) bij mensen die regelmatig trainen. Toch is er nog geen bewijsmateriaal beschikbaar dat fysieke aktiviteit/inspanning de gliale aktiviteit in menselijke hersen-gebieden (betrokken bij pijn-integratie en -perceptie) wijzigt en dit impliceert een belangrijke focus voor toekomstige research.
Het blijft onzeker of we deze redenering betreffende anti-neuro-inflammatoire effekten van inspanning-therapie kunnen toepassen op de behandeling van CS bij patiënten met chronische pijn. Eén studie bij muizen ondersteunt dit idee: fysieke training (zwemmen) na zenuw-letsel zorgde voor een omkering van mechanische hyper-sensitiviteit, normaliseerde door zenuw-letsel geïnduceerde ‘nerve growth factor’ en BDNF-expressie in de dorsale wortel ganglia, en zorgde voor een omkering van astrocyten en microglia hyper-aktiviteit in de dorsale hoornen; welke genormaliseerd bleven na het stoppen van de training [Almeida C et al. Exercise therapy normalizes BDNF upregulation and glial hyperactivity in a mouse model of neuropathic pain. Pain. (2015) 156: 504-513]. En andere pre-klinische studie toonde dat langdurige inspanning de vroege, door microglia- en astrocyten gemedieerde hersen-inflammatie na een myocard-infarct normaliseert. Ook de mogelijke anti-neuro-inflammatoire effekten van inspanning-therapie op de behandeling van CS bij patiënten met chronische pijn worden ondersteund door studies die gedaalde pijn-sensitiviteit na inspanning-therapie tonen bij patiënten met chronische pijn. Ten slotte nog een mechanisme waarbij inspanning voordelig kan zijn voor de gliale gezondheid: de stimulatie van gliale ‘heat-shock’ proteïne 72 [Hsp72, zou cellen beschermen tegen cellulaire stress; de ‘heat-shock’ respons is een universeel en essentieel adaptief mechanisme dat cellen toelaat te reageren op een brede waaier van schadelijke condities] expressie. Inspanning induceerde verhoogde neuronale en astrogliale waarden qua ‘heat-shock’ proteïne 72 in normaal ruggemerg-weefsel, wat het funktioneel herstel na experimenteel ruggemerg-letsel faciliteerde. Onderzoek bij dieren informeerde ons dat verhoogde gliale expressie van ‘heat-shock’ proteïne 72 anti-inflammatoire effekten heeft en beschermt tegen astrogliale apoptose.
————————-
De eerste auteur (Prof. Jo Nijs) drukt in het artikel zijn dankbaarheid uit ten aanzien van psychiater Boudewijn Van Houdenhove (gekend als adept van de psychiatrische school m.b.t. chronische vermoeidheid en als voorstander van cognitieve gedrag therapie en graduele oefen therapie als behandeling voor ‘cvs’) “om hem te motiveren en te inspireren om de rol van stress met betrekking tot chronische pijn te verkennen”. Zeer onthullend!
Jo Nijs geeft ook aan houder te zijn van de ‘Chair exercise immunology and chronic fatigue in health and disease’ opgericht door de Nederlandse ‘Berekuyl Academy/European College for Decongestive Lymphatic Therapy’ (doel: “stimuleren van het wetenschappelijk onderzoek naar de inspanning-immunologie van chronische vermoeidheid”). Een neuroloog die meeschreef aan dit artikel (Maarten Moens; neurochirurg en pijnspecialist, UZ Brussel) geeft aan de ‘Lyrica Independent Investigator Research Award (LIIRA)’ te hebben ontvangen als ook ooit te zijn betaald door Medtronic (bedrijf dat medische technologieaanbiedt, o.a. voor het verlichten van pijn) & Pfizer (farmaceutisch bedrijf dat Lyrica produceert).
